Non-associative Potentiation of Perisomatic Inhibition Alters the Temporal Coding of Neocortical Layer 5 Pyramidal Neurons

نویسندگان

  • Joana Lourenço
  • Simone Pacioni
  • Nelson Rebola
  • Geeske M. van Woerden
  • Silvia Marinelli
  • David DiGregorio
  • Alberto Bacci
چکیده

In the neocortex, the coexistence of temporally locked excitation and inhibition governs complex network activity underlying cognitive functions, and is believed to be altered in several brain diseases. Here we show that this equilibrium can be unlocked by increased activity of layer 5 pyramidal neurons of the mouse neocortex. Somatic depolarization or short bursts of action potentials of layer 5 pyramidal neurons induced a selective long-term potentiation of GABAergic synapses (LTPi) without affecting glutamatergic inputs. Remarkably, LTPi was selective for perisomatic inhibition from parvalbumin basket cells, leaving dendritic inhibition intact. It relied on retrograde signaling of nitric oxide, which persistently altered presynaptic GABA release and diffused to inhibitory synapses impinging on adjacent pyramidal neurons. LTPi reduced the time window of synaptic summation and increased the temporal precision of spike generation. Thus, increases in single cortical pyramidal neuron activity can induce an interneuron-selective GABAergic plasticity effectively altering the computation of temporally coded information.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

(S)- 3,5-Dihydroxyphenylglycine )an agonist for group I metabotropic glutamate receptors( induced synaptic potentiation at excitatory synapses on fast spiking GABAergic cells in visual cortex

Introduction: (S)- 3,5-Dihydroxyphenylglycine (DHPG) is an agonist for group I metabotropic glutamate receptors. DHPG-induced synaptic depression of excitatory synapses on hippocampal pyramidal neurons is well known model for synaptic plasticity studies. The aim of the present study was to examine the effects of DHPG superfusion on excitatory synapses on pyramidal and fast-spiking GABAergic cel...

متن کامل

A Cooperative Switch Determines the Sign of Synaptic Plasticity in Distal Dendrites of Neocortical Pyramidal Neurons

Pyramidal neurons in the cerebral cortex span multiple cortical layers. How the excitable properties of pyramidal neuron dendrites allow these neurons to both integrate activity and store associations between different layers is not well understood, but is thought to rely in part on dendritic backpropagation of action potentials. Here we demonstrate that the sign of synaptic plasticity in neoco...

متن کامل

Mild Traumatic Brain Injury Evokes Pyramidal Neuron Axon Initial Segment Plasticity and Diffuse Presynaptic Inhibitory Terminal Loss

The axon initial segment (AIS) is the site of action potential (AP) initiation, thus a crucial regulator of neuronal activity. In excitatory pyramidal neurons, the high density of voltage-gated sodium channels (NaV1.6) at the distal AIS regulates AP initiation. A surrogate AIS marker, ankyrin-G (ankG) is a structural protein regulating neuronal functional via clustering voltage-gated ion channe...

متن کامل

Activity-dependent modulation of layer 1 inhibitory neocortical circuits by acetylcholine.

Layer 1 neocortical GABAergic interneurons control the excitability of pyramidal neurons through cell-class-specific direct inhibitory and disynaptic disinhibitory circuitry. The engagement of layer 1 inhibitory circuits during behavior is powerfully controlled by the cholinergic neuromodulatory system. Here we report that acetylcholine (ACh) influences the excitability of layer 1 interneurons ...

متن کامل

Recruitment of Perisomatic Inhibition during Spontaneous Hippocampal Activity In Vitro

It was recently shown that perisomatic GABAergic inhibitory postsynaptic potentials (IPSPs) originating from basket and chandelier cells can be recorded as population IPSPs from the hippocampal pyramidal layer using extracellular electrodes (eIPSPs). Taking advantage of this approach, we have investigated the recruitment of perisomatic inhibition during spontaneous hippocampal activity in vitro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2014